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Abstract
We have constructed deformed scalar quantum electrodynamics where the
scalar bosons are created and/or annihilated by the step operators of a
generalized Heisenberg algebra and the photons are described in a standard way.
One parameter, η, was introduced in those terms of the interaction Hamiltonian
which have derivatives. We have computed the scattering process q-boson +
photon → q-boson + photon up to second order in the coupling constant. We
have found that the parameter, η, introduced is essential to preserve Lorentz
and gauge invariance at the quantum level. We compare the cross-section
for the scattering 2γ → q-boson +q-boson with the experimental data for
2γ → π+ + π−, where π± are the charged pions, obtaining good agreement in
the region 0.55–0.7 GeV.

PACS numbers: 03.70.+k, 11.10.−z, 02.20.Uw, 13.75.Lb.

1. Introduction

Quantum algebras first appeared in the investigation of integrable models and the Yang–
Baxter equation by Kulish and Reshetikin [1]. Later, they were independently formalized by
V G Drinfel’d [2] and M Jimbo [3] in their studies on the Yang–Baxter equation. These
algebras are a generalization of the concept of symmetries and in the past two decades there
has been much interest in understanding their physical properties and possible consequences
of these structures in physics (see, for instance, [4–13]).

Among these quantum algebras there is an interesting class of algebras named deformed
Heisenberg algebras [14–16]. They are deformations of the Heisenberg algebra by means
of the introduction of one or more parameters. There has been much work studying these
structures and properties. An interpretation of deformed Heisenberg algebras as describing
phenomenologically composite particles has been explored in the literature in the last 15 years;
see, for example, [17–24]. The basic argument is that the algebra of the creation and
annihilation operators representing composite particles (or the step operators of general

1751-8113/08/145404+18$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/14/145404
http://stacks.iop.org/ JPhysA/41/145404


J. Phys. A: Math. Theor. 41 (2008) 145404 C I Ribeiro-Silva et al

excitations of many point-like particles) becomes different from the usual Heisenberg algebra
due to the internal degrees of freedom of their corresponding point-like particles; see a more
detailed discussion, of this point, for example, in [20].

In order to explore these ideas, a program to construct a phenomenological quantum field
theory (QFT) based on a generalized Heisenberg algebra (GHA) [25] was started [26, 27].
The purpose of this program is to give a phenomenological description of the interaction of
composite particles. In [26, 27] a deformed scalar QFT was constructed and in [28] it was
shown that this deformed model is renormalized up to second order in the coupling constant.
Note that the deformed QFT constructed in the last three references obeys the important
requirements of a consistent QFT such as Lorentz invariance, locality and renormalization up
to second order in the coupling constant.

In this paper we consider a new step of this program. We discuss the scalar quantum
electrodynamics with the standard U(1) as the gauge group and use a quantization procedure
where a deformed Heisenberg algebra describes the scalar particles and the photons are
quantized in a standard way. We introduce a parameter η in those terms of the interaction
Hamiltonian which have derivatives. We use this formalism to evaluate a photon-induced
process of composite particles up to second order in the coupling constant. We also analyze
the gauge and Lorentz symmetries of the photon-induced process. The requirement of these
symmetries in the photon-induced process implies relations among the parameters of the
algebra and η, leaving only one free parameter. We compare the cross-section for the scattering
2γ → q-boson +q-boson with the experimental data for 2γ → π+ + π−, where π± are the
charged pions, obtaining good agreement in the region 0.55–0.7 GeV.

In section 2 we summarize the generalized Heisenberg algebra [25], slightly modified.
In section 3 we describe a scalar complex quantum field theory where the scalar fields
are described using the generalized Heisenberg algebra. In section 4 we introduce the
interaction Hamiltonian where the complex deformed scalar fields interact with the standard
electromagnetic field. Furthermore, in this section we compute perturbatively, up to second
order, the interaction of one deformed boson with one standard photon giving one deformed
boson and one photon and analyze the Lorentz and gauge invariance of the process. In
section 5 we compute the cross-section for the scattering 2γ → q-boson +q-boson and
compare with the experimental data for 2γ → π+ + π− obtaining good agreement in the
region 0.55–0.7 GeV. In section 6 we present the main differences that we have found in
the perturtative computation we have performed with respect to the standard scalar QED.
Moreover, we give in this section the value of the coefficient we have introduced in the
interaction Hamiltonian in order to satisfy Lorentz and gauge symmetries at the quantum
level. Final comments are also presented in this section. Finally, there are two appendices
where we show the details of some computations.

2. Generalized Heisenberg algebra

As introduced in [25], the GHA has three generators, JA
0 , A and A†, and is described by the

following relations:

JA
0 A† = A†f

(
JA

0

)
(1)

AJA
0 = f

(
JA

0

)
A (2)

[A,A†] = f
(
JA

0

) − JA
0 (3)

where f (x) is a general function called the characteristic function of the algebra and † means
Hermitian conjugate. Each particular form of the function f (x) is associated with a particular
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physical system; for instance, if f (x) = qx + 1 we have a deformed Heisenberg algebra
[25], with q being the deformation parameter. Interesting physical systems, such as the
square-well potential [31], the harmonic oscillator in the circle [32] and the CO molecule
[13], were also analyzed through the GHA. In general, the GHA describes a class of quantum
systems characterized by having successive energy eigenvalues obeying εn+1 = f (εn), with
the function f (x) being the characteristic function of the algebra.

In order to describe a complex field we must introduce a new set of operators, JB
0 , B and

B† satisfying similar relations,

JB
0 B† = B†f

(
JB

0

)
(4)

BJB
0 = f

(
JB

0

)
B (5)

[B,B†] = f
(
JB

0

) − JB
0 ; (6)

by hypothesis, J
†
0 = J0 and f (J0) is an arbitrary function of J0. Clearly, we choose

[A,B†] = [A†, B†] = [A†, B] = [A,B] = 0. (7)

We assume that there is a vacuum state represented by |0, 0〉 (for simplicity, we will represent
it by |0〉) and that for this vacuum state we have

JA
0 |0, 0〉 = JB

0 |0, 0〉 = α0|0, 0〉 ≡ α0|0〉. (8)

It can be shown [25] that for an arbitrary function f ,

JA
0 |mA,mB〉 = f (mA)(α0)|mA,mB〉, (9)

A†|mA,mB〉 = NmA
|mA + 1,mB〉, (10)

A|mA,mB〉 = NmA−1|mA − 1,mB〉, (11)

JB
0 |mA,mB〉 = f (mB)(α0)|mA,mB〉, (12)

B†|mA,mB〉 = NmB
|mA,mB + 1〉, (13)

B|mA,mB〉 = NmB−1|mA,mB − 1〉, (14)

where mA,B = 1, 2, . . . and

N2
m−1 = f (m)(α0) − α0, (15)

α0 being the lowest J0 eigenvalue and f (m)(α0) is the mth iteration of α0 through the function
f (x). If, for instance, f (x) = tx2 + qx + s, for m = 1 equation (15) gives

N0
2 = tα0

2 + (q − 1)α0 + s. (16)

As noted before, GHA describes a class of quantum systems characterized by energy
eigenvalues given by εn = f (εn−1), where εn and εn−1 are successive energy levels. Unlike
conventional Heisenberg algebra, in the general case we are considering the energy of n
particles is different from n times the energy of one particle. This happens, for instance, when
the ladder operators of the GHA create and/or annihilate composite particles where these
composite particles are not too far from each other in order to have a small interaction among
them and not too close to each other in order that each composite particle remains composite
[33].

The interpretation of deformed Heisenberg algebras as describing phenomenologically
composite particles is not a new idea [17–24]. The basic concept is that the deformation
parameter of the algebra could incorporate the essential features of the microscopic dynamics
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of the physical system. As a simple example, let us consider a
†
1 and a

†
2 to be the creation

operators of two fermions labeled by the numbers 1 and 2 and the creation operator of a
composite (by these two fermions) boson-like particle as b† = a

†
2a

†
1; the annihilation operator

of this boson-like particle is its adjoint. Defining the number operator of the boson-like
particles as N = (

a
†
1a1 + a

†
2a2

)/
2, the commutation relations of N, b and b† obey a modified

Heisenberg algebra. As a physical example of this, the algebra of fermion pairs with zero
angular momentum can be approximated by the q-oscillator algebra [18, 19]. Also, their
pairing Hamiltonian has a non-addititvity property, in the sense that the energy difference of
any two successive levels are not equal. This is a property of deformed Heisenberg algebras
unlike the harmonic oscillator algebra. In their shell model of nuclear collective motion [18,
19], the fermion pairs of zero angular momentum (J = 0) in a single j -shell are created by
the pair creation operator

B† = 1√
�

∑
m>0

(−1)j+mf
†
j,mf

†
j,−m, (17)

with −j � m � j , where f
†
j,m are fermion creation operators and 2� = 2j + 1 is the

degeneracy of the shell (here we are using the same notation of [18, 19]). The pair creation
and annihilation operators satisfy the algebra

[B,B†] = 1 − NF

�
, (18)

where NF = ∑
m>0

(
f

†
j,mfj,m + f

†
j,−mfj,−m

)
is the fermion number operator and the pairing

Hamiltonian is H = −G�B†B. In [18, 19] it is shown that q-oscillator algebra can
approximate the algebra given by equation (18).

3. Complex spinless GQFT

As was noted in [34], it is possible to construct a generalized QFT with a nonlinear function
f (J0) = tJ 2

0 + qJ0 + s. Obviously for t = 0 we have the linear case. Thus, from now on
we discuss the algebra given by (1)–(3) for this linear case (and s = 1), which is the simplest
case. In this case the algebraic relations (1)–(3) can be written as [25][

JA
0 , A†]

q
= A†, (19)

[
JA

0 , A
]
q−1 = − 1

q
A, (20)

[A,A†] = (q − 1)JA
0 + 1, (21)

where [a, b]q = ab − qba is the q-deformed commutation relation between two operators
a and b. The same relations are valid for JB

0 , B and B†. Equations (19–(21) describe a
one-parameter deformed Heisenberg Algebra already discussed in [25]. Of course, for q = 1,
we recover the standard Heisenberg algebra.

By defining the standard number operators NA and NB such that

NA|mA,mB〉 = mA|mA,mB〉 (22)

and

NB |mA,mB〉 = mB |mA,mB〉. (23)

Thus, using (9)–(14) one can write J0 as

J
A/B

0 = [NA/B]qN
2
0 + α0, (24)
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where

[NA/B]q = qNA/B − 1

q − 1
(25)

is the standard Gauss number. Making use of the shift operator TA/B , with TA/B = T̄
†
A/B (see

[35] and [31] for more details) obeying the following relations,

T̄A|mA,mB〉 = |mA + 1,mB〉, (26)

TA|mA,mB〉 = |mA − 1,mB〉 (27)

and

T̄B |mA,mB〉 = |mA,mB + 1〉, (28)

TB |mA,mB〉 = |mA,mB − 1〉, (29)

we rewrite the operators, A,A† and B,B† with the help of equations (9)–(14) as

A† = S(NA)T̄A, (30)

A = TAS(NA), (31)

B† = S(NB)T̄B, (32)

B = TBS(NB), (33)

where

S(NA/B)2 = [NA/B]qN
2
0 . (34)

The foregoing algebra can be used to construct a generalized quantum field theory (GQFT)
which, obviously, inherit all of its peculiarities. Using the procedure described in [26–28, 34]
for the complex spinless field, we define

φ(�r, t) =
∑

�k

1√
2�w(�k)

(
A�k e−ı�k.�r + B

†
�k eı�k.�r), (35)

φ†(�r, t) =
∑

�k

1√
2�w(�k)

(
A

†
�k eı�k.�r + B�k e−ı�k.�r), (36)

�†(�r, t) =
∑

�k

ıw(�k)√
2�w(�k)

(−A�k e−ı�k.r + B
†
�k eı�k.�r), (37)

�(�r, t) =
∑

�k

ıw(�k)√
2�w(�k)

(−A
†
�k eı�k.�r + B�k e−ı�k.r

)
, (38)

where the coefficients in (35)–(38) satisfy relations (19)–(21), w(�k) =
√�k2 + m2,m is a real

parameter and � is the volume of a rectangular box.
Inserting the Fourier expansion of the field operator into

HKG
0 = 1

2

∫
d3�r(�†(�r, t)�(�r, t) + �∇φ†(�r, t) �∇φ(�r, t) + m2φ(�r, t)†φ(�r, t)), (39)

we find

HKG
0 = 1

2

∑
�k

w(�k)N2
0

{[
NA

�k + 1
]
q

+
[
NA

�k
]
q

+
[
NB

�k + 1
]
q

+
[
NB

�k
]
q

}
(40)
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where [NA/B]q is the standard Gauss number operator. Note that in the limit q → 1, the
Hamiltonian is proportional to the number operator.

The time evolution of the fields can be studied by solving Heisenberg’s equation for
A

†
�k, A�k, B

†
�k, B�k . Thus, using equation (40) we obtain the following results:

A
†
�k = A

†
�k(0) e−ıw(�k)h(NA

�k )t (41)

B
†
�k = B

†
�k(0) e−ıw(�k)h(NB

�k )t (42)

where

h
(
N

A/B

�k
) = 1

2	EN2
0 (1 + q), (43)

and 	E = [
N

A/B

�k + 1
]
q

− [
N

A/B

�k
]
q
. For later use let us define the vacuum expectation value

of (43) represented here by

h(0) = 〈0|h(
N

A/B

�k
)|0〉 = ζN2

0 (44)

where

ζ = 1
2 (q + 1). (45)

We impose the following constraint among the parameters of GHA by choosing

h(0) = 1; (46)

this constraint is necessary to preserve the Lorentz invariance of the theory. It is easy to see
that the solution of this constraint is α0 = −1/(q +1) which, according to [25], is only possible
for −1 < q < 1.

Using equations (41) and (42) in the Fourier expansions shown in (35)–(38), the field
φ(x) can thus be written as (x ≡ (�r, t))

φ(x) = α(x) + β†(x), (47)

where

α(x) =
∑

�k

1√
2�w(�k)

e−ı�k.�r+ıw(�k)h(NA
�k )t

A�k(0) (48)

and

β†(x) =
∑

�k

1√
2�w(�k)

B
†
�k(0) eı�k.�r−ıw(�k)h(NB

�k )t
. (49)

The generalized Pauli–Jordan delta is defined as the commutator between the field operator
φ(x, x0) and φ†(y, y0) for arbitrary, possibly unequal times x0, y0:

	N(x − y) := [φ(x), φ†(y)]. (50)

The vacuum expectation value of (50) preserves all properties of the conventional Pauli–Jordan
function 	(x), for instance, the fundamental property of quantum fields

〈0|	N(x − y)|0〉 = 0, (51)

outside of the light cone, i.e, for space-like distances (x − y)2 < 0. One can find an explicit
expression for the operator 	N(x − y) inserting expansion (35) and the Hermitian adjoint in
(50). The expression gets simplified through the use of the commutation relations (3) and (6):

ı	N(x − y) = ı
(
f

(
JA

0

) − JA
0

)
	N

(+) + ı
(
f

(
JB

0

) − JB
0

)
	N

(−), (52)
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where

	N
(±)(x − y) =

∫
d3p

(2π)3ω(�p)
e±ı �p·(�x−�y)∓ıw(�k)h(N)t (53)

and the vacuum expectation value is given by

〈0|	N(x − y)|0〉 = N2
0 〈0|	(x − y)|0〉, (54)

	(x − y) being the conventional Pauli–Jordan function.
The next task is to evaluate the Dyson–Wick field contraction between (xi ≡ (ri, ti))

φ(x1) and φ†(x2), which gives

ı	
(NA

�k ,NB
�k )

F (x) = ıN2
0

(2π)4

∫
d4k

F (N�k) e−ı�k.�r+ık0H(N�k)t

k2 − m2
− (N → N − 1), (55)

where

F(N�k) = [
NA

�k + 1
]
q
θ(k0x) +

[
NB

�k + 1
]
q
θ(−k0x) (56)

and

H(N�k) = [
h
(
NA

�k
)
θ(k0x) + h

(
NB

�k
)
θ(−k0x)

]
, (57)

where θ(x) is the Heaviside function. It is clear that the Dyson–Wick contraction, for instance
the 	N

F (x) given in equation (55), in GQFT [26, 27] is not a c-number and hence it does not
commute with φ,[

	N
F (x), φ(x)

] 	= 0, (58)

as it commutes in conventional quantum field theory. As shown in [26, 27], this fact leads
to a change in Wick theorem. The propagator is defined as the vacuum expectation value of
equation (55),

	0
F (x) = N2

0

(2π)4

∫
d4k

e−ı�k.�r+ık0h(0)t

k2 − m2
. (59)

Using condition (46) we obtain

	0
F (x) = N2

0 	F (x), (60)

where 	F (x) is the usual scalar Feynman propagator.
The charge operator of this theory must obey the usual commutation rules

[Q,φ(x)] = −φ(x), [Q,φ†(x)] = −φ†(x), (61)

inasmuch as the field operator φ† may increases the charge of a state by one unit and similarly
the operator φ reduces the charge by one unit. Therefore, the charge operator is

Q =
∫

d3k
(
NA

k − NB
k

)
. (62)

4. Scattering of photons by composite particles

4.1. Perturbative computation and Lorentz covariance

Using the formalism we have just presented in the last section we are going now to analyze
the scattering process of a charged scalar composite particle by a photon. The Hamiltonian of
a scalar charged particle interacting with a photon is

H = HKG
0 + Hem

0 + Hint, (63)

7
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where HKG
0 is given previously in equation (39), Hem

0 is the Hamiltonian of the Maxwell field
and

Hint = ieφ�(x)
↔
∂kφ(x)Ck(x) + ie(π�(x)φ�(x) − π(x)φ(x))C0(x)

− e2φ�(x)φ(x)Cµ(x)Cµ(x) + e2φ�(x)φ(x)C0(x)2 (64)

is the interaction Hamiltonian where the electromagnetic field is the standard one and is
denoted by Cµ(x) and

φ�(x)
↔
∂kφ(x) ≡ −∂kφ

�(x)φ(x) + φ�(x)∂kφ(x). (65)

In the interaction picture it is easy to see from equations (35)–(38) and (41)–(42) that

π †(�r, t) = ∂0φ(�r, t) + ρ(�r, t), (66)

where

ρ(�r, t) =
∑

�k

iw(�k)√
2�w(�k)

(
Mk

1 A�k e−ı�k.�r + B
†
�kM

k
2 eı�k.�r) (67)

and

Mk
1 = (

1 − h
(
NA

k

))
eıw(�k)h(NA

k )t , (68)

Mk
2 = (

1 − h
(
NB

k

))
e−ıw(�k)h(NB

k )t . (69)

Note that for q → 1 one has h(N) → 1, thus ρ(�r, t) = 0 and one obtains the standard result.
Now, according to equations (66)–(69), the interaction Hamiltonian within the interaction
picture can be written as

Hint = i : eφ†(x)
↔
∂µφ(x)Cµ : −e2 : φ†(x)φ(x)CµCµ : (70)

+ e2 : φ†(x)φ(x)(C0)2 : +ie : (ρ(x)φ†(x) − ρ†(x)φ(x))C0 :,

where the symbol :: means the normal ordering prescription.
By hypothesis the composite particles are created by the GHA operators whereas the

photon is supposed to be the standard structureless neutral particle. We shall analyze the
following scattering process,

P + + γ → P ′+ + γ ′, (71)

with an initial state

|i〉 ≡ |k, p〉 = a
†
kλA

†
p

N0
|0〉 (72)

and a final state

|f 〉 ≡ |k′, p′〉 = a
†
k′σA

†
p′

N0
|0〉, (73)

where A†, A create and annihilate composite particles, respectively, and a
†
�k1λ

, a �k1λ
are the

coefficients of the Fourier expansion of the photon field given as

Cµ(x) =
∑

�k

1√
2�ωk

3∑
λ=0

(
a�kλε

µ(k, λ) eik.x + a
†
�kλ

εµ(k, λ) e−ik.x
)
, (74)

with εµ(k, λ) being the polarization vectors and N0 given by equation (16). For simplicity we
have changed our notation and now in the ket vector |k, p〉, k represents the momentum of the

8
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photon and p stands for the momentum of the composite particle (instead of |mA,mB〉) and
|0〉 represents the vacuum.

As was explained before, the quantization through deformed algebras we are implementing
can be used to describe phenomenologically interactions of composite particles. Moreover,
these composite particles being not point like ones have an extent, thus it is possible that the
terms in the interacting phenomenological Hamiltonian which are proportional to derivatives
differ from the standard point-like Hamiltonian by a constant η satisfying the condition

lim
q→1

η = 1. (75)

Therefore we consider the interaction of the photon with the charged composite particle
described by the following phenomenological Hamiltonian,

Hint = ieη : [φ†(x)∂µφ(x) − ∂µφ(x)†φ(x)]Cµ :

− e2 : φ†(x)φ(x)CµCµ : +e2 : φ†(x)φ(x)(C0)2 :

+ ie : (ρ(x)φ†(x) − ρ†(x)φ(x))C0 : . (76)

Inspecting (76) we note that the last two terms are non-covariant and appear to destroy the
Lorentz covariance of the theory. When working out the perturbation expansion, however,
one observes that the boson propagator also contains a non-covariant part that cancels the
contribution of the non-covariant term proportional to e2. We shall see that this mechanism
is preserved here. Moreover, because h(0) = 1, as is seen in equation (46), the last term in
equation (76) will not contribute.

Let us now consider the matrix element S1
f i = 〈f |Ŝ1|i〉, where Ŝ1 is the first order

perturbative expansion of the S-matrix Ŝ1 = −i
∫

d4xHint, with Hint given in equation (76)
and the states |i, f 〉 given in equations (72) and (73). The terms that give non-zero contributions
to S1

f i are

S1
f i = ie2

∫
d4x〈f | : φ†(x)φ(x)Cµ(x)Cµ(x) : |i〉 + ET, (77)

where

ET = −ie2
∫

d4x〈f | : φ(x)†φ(x)(C0)2 : |i〉. (78)

In order to compute the first term on the right-hand side of equation (77), first we insert
the expansions of the field operators given in equations (35), (36) and (74) and the states given
in equations (72) and (73) in the first term of equation (77). Taking into account[

a �k′λ, a
†
�k′
3σ

] = δ�k′,�k3
δλ,σ , (79)

also

〈0|A�p′A
†
�k1
A �k2

A
†
�p|0〉 = N4

0 δ�p′,�k1
δ�p,�k2

(80)

and that [N,A†] = A†, we obtain

S1
f i = ie2N2

0 ε(k′, σ ).ε(k, λ)

2�2√ωpωp′ωkωk′

∫
d4x ei(ω(p′)−ω(p))h(0)t+(�p−�p′)·�r+i(k−k′)·x + ET, (81)

choosing, as in equation (46), h(0) = 1 and carrying out the integration in the first term in
equation (81) we obtain

S1
f i = ie2N2

0 ε1 · ε2

4π2√ωpωp′ωkωk′
δ(4)(p + k − p′ − k′) + ET, (82)

9
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where

ε1 · ε2 = εµ(k′, σ )εµ(k, λ) (83)

and N0 is defined in equation (16).
There is a further contribution to the element of matrix we are computing of the same

order e2, which has to be added coherently. This contribution comes from the second-order
term in the perturbation series expansion of the S-matrix which is given by

S2
f i = (−i)2

2!

∫
d4x d4y〈f |T (Hint(x)Hint(y))|i〉, (84)

where 〈f | and |i〉 are given in equations (72) and (73), respectively. Inserting the interaction
Hamiltonian, given in equation (76), in equation (84) and using the generalized Wick’s theorem
given in the appendix of [27], we obtain

S2
f i = e2η2

2!

∫
d4x d4y〈f |(φ†(x)∂µφ(x)φ†(y)∂νφ(y)

+ φ†(x)∂µφ(x)φ†(y)∂νφ(y) − φ†(x)∂µφ(x)∂νφ(y)†φ(y)

+ φ†(x)∂µφ(x)∂νφ
†(y)φ(y) + ∂µφ†(x)φ(x)φ†(y)∂νφ(y)

+ ∂µφ†(x)φ(x)φ†(y)∂νφ(y) + ∂µφ†(x)φ(x)∂νφ
†(y)φ(y)

+ ∂µφ†(x)φ(x)∂νφ
†(y)φ(y)) : Cµ(x)Cν(y) : |i〉. (85)

Note that we have discarded the contribution of the last term of the interaction Hamiltonian
given in equation (76) because, as shown in appendix A, this term gives no contribution for
the present computation. Moreover, since the contractions in the above equation now are not
c-numbers each term must be considered separately.

To explicitly evaluate equation (85) we might first derive the action of gradient operators
on the Dyson–Wick contractions of two boson field operator

ı	N
F (x − y) = φ(x)φ†(y) = [α(x), α†(y)]θ(x0 − y0) + [β(y), β†(x)]θ(y0 − x0). (86)

Thus, the action of a single gradient operator on the Dyson–Wick contraction gives

ı∂y
ν 	N

F (x − y) = φ(x)∂y
ν φ†(y) − gν0	

N(x − y)δ(x0 − y0), (87)

where 	N(x − y) is the generalized Pauli–Jordan delta (50). The last term in the above
equation gives no contribution when inserted into an element of matrix of the S-matrix. For
instance, the computation of

δ(x0 − y0)〈f |	N(x − y)|i〉, (88)

where the states are given in equations (72) and (73), gives

δ(x0 − y0)	
(δk,p)(x − y) = N2

0 δ(x0 − y0)	(x − y) = 0, (89)

where 	(x − y) is the standard Pauli–Jordan function, and �k and �p are the momentum in
the integral representation of the generalized Pauli–Jordan function and the initial momentum
of the composite particle. The first equality in the above equation is obtained by using the
property ∫ ∞

−∞
dx f (x + δx,x0) =

∫ ∞

−∞
dx f (x) (90)

10
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inside the definition of the generalized Pauli–Jordan function equation (53). However, if a
second gradient operator acts,

ı∂x
µ∂y

ν 	N
F (x − y) = ∂x

µφ(x)∂y
ν φ†(y) + gµ0∂

y
ν 	N(x − y)δ(x0 − y0), (91)

unlike equation (87) the last term of (91) does not vanish when inserted inside the initial and
final states. From (86), (87), (91) we conclude that

φ(x)φ†(y) = 	N
F (x − y)

φ(x)∂y
ν φ†(y) = i∂y

ν 	N
F (x − y) + gν0	

N(x − y)δ(x0 − y0)

(92)

and

∂µφ(x)∂νφ
†(y) = i∂x

µ∂y
ν 	N

F (x − y) − igµ0∂
y
ν 	N(x − y)δ(x0 − y0). (93)

Now, let us go back to the computation of equation (85). As is shown in the appendix of
[27], because the contractions of the deformed fields are not c-numbers Wick’s theorem has
an additional subtlety and the explicit expressions of time-ordered products are less simple
in this case than the standard case. However, as shown in appendix B of this paper, taking
the matrix elements of time-ordered products of fields and their derivatives because of the
property given in equation (90) we recover the standard expression of Wick’s theorem with
the following modifications:

	N
F (x − y) −→ 	0

F (x − y) = N2
0 	F (x − y),

	N(x − y) −→ 	0(x − y) = N2
0 	(x − y),

(94)

where 	F (x − y) and 	(x − y) are the conventional scalar Feynman propagator and Pauli–
Jordan function, respectively. Thus S2

f i becomes

S2
f i = ıe2η2

∫
d4x d4y〈f | :

[
∂x
µ	0

F (x − y)φ†(x)∂νφ(y)

−	0
F (x − y)∂x

µφ†(x)∂y
ν φ(y) − ∂x

µ∂y
ν 	0

F (x − y)φ†(x)φ(y)

+ ∂y
ν 	0

F (x − y)∂x
µφ†(x)φ(y)

]
:: Cµ(x)Cν(y) : |i〉

+ ıe2η2
∫

d4x d4y〈f | : δ(x0 − y0)∂
y
ν 	0

F (x − y)φ†(x)φ(y) :

× : C0(x)Cν(y) : |i〉. (95)

Since ıδ(x0 − y0)∂
y
ν 	0(x − y) = ıN2

0 gν0δ
4(x − y) the last term in (95) gives

ıe2η2N2
0

∫
d4x d4y〈f | : φ†(x)φ(y) (C0(x))2 : δ4(x − y)|i〉

= ıe2η2N2
0

∫
d4x〈f | : φ†(x)φ(y) (C0(x))2 : |i〉. (96)

Then we see that if we choose

Lorentz invariance condition

η2 = 1

N2
0

, (97)

the last term in equation (95) cancels the term we called ET given in equation (78). Thus,
with this choice, we have shown that up to order e2 the scattering of photon by a composite
particle described in (71)–(73) is Lorentz invariant.

11
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The remaining terms in equation (95) give the additional terms to be added to
equation (82) to obtain the total matrix element of the scattering described in (71)–(73)
up to order e2. Let us start considering the first term in equation (95), i.e.,

T1 = ıe2η2

N2
0

∫
d4x d4y∂x

µ	0
F (x − y)〈0|Ap′ : φ†(x)∂y

ν φ(y) : A†
p|0〉

× 〈0|ak′σ : Cµ(x)Cν(y) : a
†
kλ|0〉. (98)

The only part of this computation which is different from the usual evaluation in quantum
field theory is the computation of the matrix element 〈0|Ap′ : φ†(x)∂

y
ν φ(y) : A

†
p|0〉. Using

equations (35), (36), (46) and (80), we easily find

〈0|Ap′ : φ†(x)∂y
ν φ(y) : A†

p|0〉 = e
ı�k3.�x−ıω(k3)h(−1+δ �p′ ,�k3

)tx

∂y
ν e−ı�k4.�y+ıω(k4)h(−1+δ�p,�k4

)ty 〈0|Ap′A
†
k3

Ak4A
†
p|0〉 = −ıN4

0 pν eı(p′.x−p.y)δ �p′,�k3
δ�p,�k4

.
(99)

The rest of the evaluation of T1 is completely similar to the standard case and the final result is

T1 = −ıe2η2(2π)4N4
0 εµ(k′, σ )εν(k, λ)

4�2ω(p)ω(p′)ω(k)ω(k′)

×
[

pν(p + k)µ

(p + k)2 − m2
+

pµ(p′ − k)ν

(p′ − k)2 − m2

]
δ(4)(p′ + k′ − p − k). (100)

Proceeding in the same way in the computation of the other terms equation (95), puting the final
result together with those obtained in equation (82) in the first order perturbative expansion
for the S-matrix, we finally obtain, using the Lorentz invariant choice η2 = 1

/
N2

0 ,

Sf i = ie2N2
0 εµ(k′, σ )εν(k, λ)

16π2
√

ω(p)ω(p′)ω(k)ω(k′)
Tµνδ

4(p + k − p′ − k′), (101)

where

Tµν =
[

Mµν

(p + k)2 − m2
+

Nµν

(p′ − k)2 − m2

]
+ 2gµν (102)

and

Mµν = −[pν + (p + k)ν][(p + k)µ + p′
µ], (103)

Nµν = −[pµ + (p′ − k)µ][(p′ − k)ν + p′
ν]. (104)

4.2. Gauge invariance

The classical Hamiltonian with the parameter η, see (39) and (76), is not gauge invariant.
It is interesting to note that the amplitude of scattering we have computed, (101)–(104), is
gauge invariant if the values of this parameter is chosen in order to satisfy Lorentz invariance.
Of course, we impose that the amplitude is not changed when the potential is re-gauged,
εµ(k) → εµ(k) + kµ�(k), i.e.,

Tµνk
ν = k′µTµν = 0. (105)

Rewriting the dominator in (102) as

(p + k)2 − m2 = p2 + 2k · p + k2 − m2 = 2k · p,

(p′ − k)2 − m2 = p′2 + 2k · p′ − k2 − m2 = −2k · p′,

and computing Mµνkν and Nµνkν , we obtain easily that the condition given in (105) is trivially
satisfied.

12
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Figure 1. Experimental data and a comparison between the cross-section predicted by the
conventional QFT (dashed line) and the GQFT (solid line). The fitting was obtained for
q = qπ = 0.81. The value of Z was taken as Z = 0.6.

5. Electromagnetic processes in relativistic meson–meson collisions

We have computed perturbatively the scattering of scalar charged q-particles by standard
photons. Following [18], where it was suggested that deformed algebras could be used as a
phenomenological description of composite particles, we are going to compute in this section
the cross-section for the process 2γ → P +

q + P −
q where P ±

q are the scalar charged q-particles
which gives a phenomenological description of charged scalar composite particles. Moreover,
we compare this cross-section with the experimental data [36] for the two-photon production
of π+π− pair where π± are the charged pions.

It was shown in the last two sections that requiring gauge and Lorentz symmetries at
quantum level the S-matrix for the scattering process up to second order in the coupling
constant is given by equations (101)–(104). Thus, following the procedure in [37, 38], the
cross-section for the process 2γ → P +

q + P −
q is

σZ = πα2N4
0

m2

[
2Zx(1 + x)

√
1 − x

(
x2

1 − (1 − x)Z2
+ 1

)
− x2(2 − x) ln

(
1 +

√
1 − xZ

1 − √
1 − xZ

)]
,

(106)

where α is the fine structure constant, x ≡ 4m2
π

/
s, s = E2

c.m. is the Mandelstam variable, m is
the mass of the pion and Z is finite solid angle (| cos θ | < Z). Note that in order to compare
with experimental data we have integrated over a finite solid angle.

Figure 1 shows a comparison between the predicted cross-section of the conventional QFT
and the deformed QFT for γ γ → π+π− along with experimental data [36, 39]. Conventional
QFT describes well the experimental data at low energy range since the pion should be
considered as point particles. As the energy increases conventional QFT starts to have poor
agreement with experimental data. In the region 0.55–0.7 GeV the pions should not be
considered point-like particles anymore and deformed QFT for q = qπ = 0.81 describes the
experimental data much better. It is also interesting to mention that in this energy region
perturbative QCD calculations are in poor agreement with experimental data [40].
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6. Analysis of the results

We have constructed deformed scalar quantum electrodynamics where the scalar bosons are
created and/or annihilated by a generalized Heisenberg algebra and the photons are described
in a standard way. Following the suggestion of [17–27], we interpret the ladder operators of a
deformed Heisenberg algebra as creating and/or annihilating composite particles.

The interaction part of the Hamiltonian is slightly modified: we introduce one constant,
η, in those terms of the interaction Hamiltonian which have derivatives (see equation (76)).
We have found for the scattering process P + + γ → P ′+ + γ ′ that for η2 = 1/N2

0 the model
preserves Lorentz and gauge symmetries at the quantum level.

Within the framework of this deformed scalar QED we have computed, up to second order
in the coupling constant, the scattering process P + + γ → P ′+ + γ ′ with an initial state

|i〉 ≡ |k, p〉 = a
†
kλA

†
p

N0
|0〉 (107)

and a final state

|f 〉 ≡ |k′, p′〉 = a
†
k′σA

†
p′

N0
|0〉, (108)

where the bosons, denoted by P +, are described by a GHA and the photons, denoted by γ , are
described as usual.

The computation of the scattering mentioned above can be summarized in the following
way. Considering the parameter η appearing in the interaction term satisfying η2 = 1

/
N2

0 ,
where N0 is defined in equation (16) for t = 0, the above scattering was shown to be Lorentz
and gauge invariant. That is, gauge invariance is recovered at quantum level. There are two
possible solutions but only the positive solution η(+) = 1/N0 satisfies equation (75). Thus, the
following interaction Hamiltonian can be used

Hint = ie

N0
: [φ†(x)∂µφ(x) − ∂µφ(x)†φ(x)]Cµ : −e2 : φ†(x)φ(x)CµCµ :, (109)

with the standard Wick’s theorem together with the following modifications:

	N
F (x − y) −→ 	0

F (x − y) = N2
0 	F (x − y),

	N(x − y) −→ 	0(x − y) = N2
0 	(x − y),

(110)

where 	F (x − y) and 	(x − y) are the conventional scalar Feynman propagator and Pauli–
Jordan function, respectively. Moreover, it should be stressed that the matrix elements of the
creation and/or annihilation operators of composite particles are computed using the GHA
presented in equations (1)–(3). For the scattering under consideration we have also verified
that even in third order the gauge and Lorentz symmetries are preserved assuming the same
relations among the parameters found in previous orders. We believe that this scheme will be
preserved in all orders. It would be also interesting if we could prove that these results are
general, i.e., valid for any scattering considered within this model.

In addition, it is worth noting that the classical Hamiltonian we have modified through
the introduction of the constant η in the derivative terms of the interaction term is not gauge
invariant anymore. However, we have also shown that the scattering mentioned above,
P + + γ → P ′+ + γ ′, is gauge invariant if the constant η satisfies the Lorentz invariance
condition η = 1/N0. We have also computed the cross-section for the process 2γ → q-boson
+q-boson for q = qπ = 0.81, compared with the cross-section predicted by conventional QED
and the experimental data for the scattering 2γ → π+ + π−, where π± are the charged pions,
obtaining good agreement in the region 0.55–0.7 GeV. The parameter q is a phenomenological
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parameter that could incorporate the essential features of the microscopic dynamics of a
composite particle. A possible quantitative measure of the depart from a point-like particle
could be seen by a parameter nc = |q −1| that gives a phenomenological account for the finite
extent of the composite particle. Clearly, when nc = 0 we have a point-like particle and when
nc is different from zero the particle should be considered as composite.

It would be interesting also to compare the cross-section for the scattering 2γ → q-boson
+q-boson obtained here with the two-photon production of other mesonic pairs. We think that
this cross-section will describe the experimental data in the range of energy where the charged
mesons start not to be considered point-like particles anymore up to certain value of energy,
having a different value of q for each different charged meson.
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Appendix A. Contribution to S-matrix from ρ(x)

In this appendix we are going to show that the last term of the interaction Hamiltonian given
in equation (76) does not contribute to the S-matrix of the scattering of photon by a composite
particle computed up to second order in the coupling constant. The contribution to S2

f i of the
last term of the interaction Hamiltonian is

S2
f i = (−i)4e2

2!

∫
d4x d4y〈f |T (: (ρ(x)φ†(x) − ρ†(x)φ(x)) ::

× (ρ(y)φ†(y) − ρ†(y)φ(y)) :: C0(x)C0(y) :)|i〉, (A.1)

where φ(x) is defined in equations (47)–(49), ρ(x) = ρA(x) + ρB†(x),

ρA(x) =
∑

�k

iw(�k)√
2�w(�k)

Mk
1 A�k e−ı�k.�r (A.2)

ρB†(x) =
∑

�k

iw(�k)√
2�w(�k)

B
†
�kM

k
2 eı�k.�r (A.3)

with Mk
1 and Mk

2 defined in equations (68)–(69) and the initial and final states given in
equations (72)–(73). We are going to consider part of the above element of matrix related to
the composite particle.

It is straightforward to see, for tx > ty , that the terms which contribute to the matrix
element, using the generalized Wick theorem [27], are

(a) 〈0|Ap′T (: ρ(x)φ†(x) :: ρ(y)φ†(y) :)A†
p|0〉

= 〈0|A′
p(α†(x)ρA(x)α†(y)ρA(y) + ρA(x)β(x)ρB†(y)α†(y))Ap|0〉 (A.4)

(b) 〈0|Ap′T (: ρ(x)φ†(x) :: ρ†(y)φ(y) :)A†
p|0〉

= 〈0|A′
p

(
α†(x)ρA(x)ρ

†
A(y)α(y) + ρA(x)β(x)ρ

†
A(y)β†(y)

)
Ap|0〉 (A.5)

(c) 〈0|Ap′T (: ρ†(x)φ(x) :: ρ(y)φ†(y) :)A†
p|0〉

= 〈0|A′
p

(
ρ
†
A(x)α(x)α†(y)ρA(y) + ρ

†
B†(x)ρB†(y)α(x)α†(y)

)
Ap|0〉 (A.6)
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(d) 〈0|Ap′T (: ρ†(x)φ(x) :: ρ†(y)φ(y) :)A†
p|0〉

= 〈0|A′
p

(
ρ
†
A(x)α(x)ρ

†
A(y)α(y) + ρ

†
B†(x)ρ

†
A(y)α(x)β†(y)

)
Ap|0〉. (A.7)

After a straightforward computation, we have for the first term of the rhs of equation (A.4)

〈0|Ap′α†(x)ρA(x)α†(y)ρA(y)A†
p|0〉

=
∑
k1···k4

(i)2ωk2ωk4

Zk1 · · · Zk4

ei�k1·�x−iωk1 h(δk1p′ )tx
(
1 − h

(
δk2p′ − δk1k2

))
× e−i�k2·�x+iωk2 h(δk2p′−δk1k2 )tx 〈0|Ap′A

†
k1

Ak2A
†
k3

Ak4A
†
p|0〉

× ei�k3·�y−iωk3 h(δk3p−δk3k4 )ty
(
1 − h

(
δk4p

))
e−i�k4·�y+iωk4 h(δk4p)ty , (A.8)

where Zk ≡
√

2�ω(�k). But since 〈0|Ap′A
†
k1

Ak2A
†
k3

Ak4A
†
p|0〉 = N6

0 δp′k1δk2k3δk4p summing
over k1 the above expression we have h

(
δk2p′ − δk1k2

) = h(0) = 1 and thus the above term,
(A.8), is identically null.

The second term of the rhs of equation (A.4) can be separated, for simplicity, in two parts
involving the operators A,B and their adjoints. The part involving the operators A and A†

can be written as

〈0|Ap′ρA(x)α†(y)A†
p|0〉 =

∑
k1,k2

iωk1

Zk1Zk2

e−i�k1·�x+iωk1 h(δk1p′ )tx
(
1 − h

(
δk1p′

))
× ei�k2·�y−iωk2 h(δk2p)ty 〈0|Ap′Ak1A

†
k2

A†
p|0〉. (A.9)

Since 〈0|Ap′Ak1A
†
k2

A
†
p|0〉 = N4

0 δp′k2δk1p, it is easy to see that the above matrix element is null
as h(0) = 1. The part involving the operators B and B† is also null as

〈0|β(x)ρB†(y)|0〉 =
∑
k3k4

iωk4

Zk3Zk4

e−ik3·x+ik4·y(1 − h(0))〈0|Bk3B
†
k4

|0〉 = 0, (A.10)

because h(0) = 1. We have calculated all remaining terms and all of them are identically null
by similar reasons (h(0) = 1 coming from ρA or/and ρB operators).

Appendix B. Element of matrix of time-ordered product of fields

In this appendix we are going to show that element of matrix of typical time-ordered product
of fields and derivatives of fields recover the standard expression of Wick’s expansion with
the modifications given in equation (94). We will consider three cases.

(1) Product of fields without derivatives.

We start considering a typical term of the time ordered product

T (: φ(x)φ†(x) :: φ(y)φ†(y) :)

where φ(x) is given in equations (47)–(49). Taking, for instance, tx � ty we have

T (α†(x)α(x)α†(y)α(y)) = α†(x)α(x)α†(y)α(y)

= α†(x)α†(y)α(x)α(y) + α†(x)	N
F (x − y)α(y). (B.1)

Thus, taking the matrix element the above time-ordered product we have (|i〉 = A
†
p|0〉 and

|f 〉 = A
†
p′ |0〉)

〈f |T (α†(x)α(x)α†(y)α(y))|i〉 = 〈f |α†(x)	N
F (x − y)α(y)|i〉

= 	
(−δk,ky +δk,p)

F (x − y)〈f |α†(x)α(y)|i〉, (B.2)
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where in the above equation k is the internal momentum of 	N
F (x − y) (see equation (55)) and

ky is the momentum of the Fourier expansion of the field φ(y). But using equation (80) we
have trivially

〈f |T (α†(x)α(x)α†(y)α(y))|i〉 = 	0
F (x − y)〈f |α†(x)α(y)|i〉

= N2
0 	F (x − y)〈f |α†(x)α(y)|i〉. (B.3)

The same thing will happen for the other terms of the element of matrix of the time-ordered
product T (: φ(x)φ†(x) :: φ(y)φ†(y) :) and we have the same result as one has for the standard
case with

	N
F (x − y) −→ 	0

F (x − y) = N2
0 	F (x − y).

(2) Product of fields with one field with derivative.

Now we consider a typical term of the time ordered product

T
(

: φ(x)φ†(x) :: φ(y)∂y
µφ†(y) :

)
where φ(x) is given in equations (47)–(49). Taking, for instance, tx � ty we have

T
(
α†(x)α(x)∂y

µα†(y)α(y)
) = α†(x)α(x)∂y

µα†(y)α(y)

= α†(x)∂y
µα†(y)α(x)α(y) + α†(x)∂y

µ	N
F (x − y)α(y). (B.4)

Thus, taking the matrix element the above time-ordered product we have (|i〉 = A
†
p|0〉 and

|f 〉 = A
†
p′ |0〉)

〈f |T (
α†(x)α(x)∂y

µα†(y)α(y)
)|i〉 = 〈f |α†(x)∂y

µ	N
F (x − y)α(y)|i〉

= N2
0 ∂y

µ	F (x − y)〈f |α†(x)α(y)|i〉, (B.5)

by the same reason as the previous case. Again, the same thing happens for the other terms of
the element of matrix of the time-ordered product.

(3) Two fields with one derivative.

Considering now a typical term of the time ordered product

T
(

: ∂x
µφ(x)φ†(x) :: φ(y)∂y

µφ†(y) :
)

and taking, for instance, tx � ty , we have for a typical term of this expansion

T
(
α†(x)∂x

µα(x)∂y
µα†(y)α(y)

) = α†(x)∂x
µα(x)∂y

µα†(y)α(y)

= α†(x)∂y
µα†(y)∂x

µα(x)α(y) + α†(x)∂x
µφ(x)∂y

ν φ†(y)α(y), (B.6)

but we know that

∂µφ(x)∂νφ
†(y) = i∂x

µ∂y
ν 	N

F (x − y) − igµ0∂
y
ν 	N(x − y)δ(x0 − y0). (B.7)

Thus, taking the matrix element of (B.6), where as before |i〉 = A
†
p|0〉 and |f 〉 = A

†
p′ |0〉,

using (B.7) and equation (80), we obtain

〈f |T (
α†(x)∂x

µα(x)∂y
ν α†(y)α(y)

)|i〉 = N2
0 ∂x

µ∂y
ν 	F (x − y)

〈f |α†(x)α(y)|i〉 − gµ,0N
2
0 ∂y

ν 	(x − y)〈f |α†(x)α(y)|i〉. (B.8)

Again, the same thing happens for the other terms of the element of matrix of the time-ordered
product.
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